1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
/// An iterator to maintain state while iterating another iterator.
///
/// `Accumulate` is created by the [`accumulate`] method on [`Iterator`]. See its
/// documentation for more.
///
/// [`accumulate`]: trait.Accumulator.html#method.accumulate
/// [`Iterator`]: ../../std/iter/trait.Iterator.html
#[must_use = "iterators are lazy and do nothing unless consumed"]
pub struct Accumulate<I, F>
where
I: Iterator,
F: Fn(I::Item, I::Item) -> I::Item,
{
accum: Option<I::Item>,
underlying: I,
acc_fn: F,
}
impl<I, F> Iterator for Accumulate<I, F>
where
I: Iterator,
I::Item: Copy,
F: Fn(I::Item, I::Item) -> I::Item,
{
type Item = I::Item;
fn next(&mut self) -> Option<Self::Item> {
match self.underlying.next() {
Some(x) => {
let new_accum = match self.accum {
// Apply function to item-so-far and current item
Some(accum) => (self.acc_fn)(accum, x),
// This is the first item
None => x,
};
self.accum = Some(new_accum);
Some(new_accum)
}
None => None,
}
}
}
/// An iterator to maintain state while iterating another iterator.
///
/// `Accumulate` is created by the [`accumulate`] method on [`Iterator`]. See its
/// documentation for more.
///
/// [`accumulate`]: trait.Accumulator.html#method.accumulate
/// [`Iterator`]: ../../std/iter/trait.Iterator.html
pub trait Accumulator: Iterator {
/// An iterator adaptor that yields the computation of the closure `F` over the
/// accumulated value and the next element of the preceding iterator.
///
/// `accumulate()` takes a function or closure with two arguments,
/// the first being the previous yielded value and the second an element from the preceding iterator.
/// The iterator maintains the state of the last yielded value.
///
/// The first element of the preceding iterator is yielded as-is.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// use rs3cache::utils::adapters::Accumulator;
///
/// let mut iter = (1..6).accumulate(|x, y| x + y);
///
/// assert_eq!(iter.next(), Some(1)); // 1
/// assert_eq!(iter.next(), Some(3)); // 1+2
/// assert_eq!(iter.next(), Some(6)); // (1+2) + 3
/// assert_eq!(iter.next(), Some(10)); // (1+2+3) + 4
/// assert_eq!(iter.next(), Some(15)); // (1+2+3+4) + 5
/// assert_eq!(iter.next(), None);
/// ```
fn accumulate<F>(self, f: F) -> Accumulate<Self, F>
where
F: Fn(Self::Item, Self::Item) -> Self::Item,
Self::Item: Copy,
Self: Sized,
Self: Iterator,
{
Accumulate {
accum: None,
underlying: self,
acc_fn: f,
}
}
}
impl<I: Iterator> Accumulator for I {}
/// An iterator that returns pair values ofn the preceding iterator.
///
/// `Pairwise` is created by the [`pairwise`] method on [`Iterator`]. See its
/// documentation for more.
///
/// [`pairwise`]: trait.Pairwisor.html#method.pairwise
/// [`Iterator`]: trait.Iterator.html
#[must_use = "iterators are lazy and do nothing unless consumed"]
pub struct Pairwise<I>
where
I: Iterator,
{
state: Option<I::Item>,
underlying_iterator: I,
}
impl<I> Iterator for Pairwise<I>
where
I: Iterator,
I::Item: Copy,
{
type Item = (I::Item, I::Item);
fn next(&mut self) -> Option<Self::Item> {
match self.underlying_iterator.next() {
Some(x) => match self.state {
Some(y) => {
self.state = Some(x);
Some((y, x))
}
None => match self.underlying_iterator.next() {
Some(y) => {
self.state = Some(y);
Some((x, y))
}
None => None,
},
},
None => None,
}
}
fn size_hint(&self) -> (usize, Option<usize>) {
self.underlying_iterator.size_hint()
}
}
/// An iterator that returns pair values of the preceding iterator.
///
/// `Pairwise` is created by the [`pairwise`] method on [`Iterator`]. See its
/// documentation for more.
///
/// [`pairwise`]: trait.Pairwisor.html#method.pairwise
/// [`Iterator`]: trait.Iterator.html
pub trait Pairwisor: Iterator {
/// An iterator adaptor that yields the preceding iterator in pairs.
///
/// Similar to the [`windows`] method on [`slices`], but with owned elements.
///
/// The first element of the preceding iterator is yielded unchanged.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// use rs3cache::utils::adapters::Pairwisor;
///
/// let mut iter = (0..6).pairwise();
///
/// assert_eq!(iter.next(), Some((0, 1)));
/// assert_eq!(iter.next(), Some((1, 2)));
/// assert_eq!(iter.next(), Some((2, 3)));
/// assert_eq!(iter.next(), Some((3, 4)));
/// assert_eq!(iter.next(), Some((4, 5)));
/// assert_eq!(iter.next(), None);
/// ```
///
/// [`windows`]: ../../std/primitive.slice.html#method.windows
/// [`slices`]: ../../std/primitive.slice.html
fn pairwise(self) -> Pairwise<Self>
where
Self::Item: Copy,
Self: Sized,
Self: Iterator,
{
Pairwise {
state: None,
underlying_iterator: self,
}
}
}
impl<I: Iterator> Pairwisor for I {}
#[cfg(test)]
mod accumulator_tests {
use super::Accumulator;
#[test]
fn test_accumulator_cumulative() {
let result: Vec<i32> = (1..6).accumulate(|x, y| x + y).collect();
let expected_result: Vec<i32> = vec![1, 3, 6, 10, 15];
assert!(result == expected_result)
}
#[test]
fn test_accumulator_rolling_factorial() {
let result: Vec<i32> = (1..6).accumulate(|x, y| x * y).collect();
let expected_result: Vec<i32> = vec![1, 2, 6, 24, 120];
assert!(result == expected_result)
}
}
#[cfg(test)]
mod pairwise_tests {
use super::Pairwisor;
#[test]
fn test_pairwise() {
let result: Vec<(i32, i32)> = (0..6).pairwise().collect();
let expected_result: Vec<(i32, i32)> = vec![(0, 1), (1, 2), (2, 3), (3, 4), (4, 5)];
assert_eq!(result, expected_result)
}
#[test]
fn test_empty_pairwise() {
let result: Vec<(i32, i32)> = Vec::new().into_iter().pairwise().collect();
let expected_result: Vec<(i32, i32)> = Vec::new();
assert_eq!(result, expected_result)
}
#[test]
fn test_single_pairwise() {
let result: Vec<(i32, i32)> = (0..1).pairwise().collect();
let expected_result: Vec<(i32, i32)> = Vec::new();
assert_eq!(result, expected_result)
}
#[test]
fn test_double_pairwise() {
let result: Vec<(i32, i32)> = (0..2).pairwise().collect();
let expected_result: Vec<(i32, i32)> = vec![(0, 1)];
assert_eq!(result, expected_result)
}
}